
NASA Contractor Report 187568

ICASE INTERIM REPORT 17

A MANUAL FOR PARTI RUNTIME PRIMITIVES

Revision 1

Raja Das
Joel Saltz

Harry Berryman

NASA Contract No. NAS1-18605

May 1991

NA_,_-,.._-I_7_ ,3) A MANUAL FOR PAR.T[_UHTIME

PnlMITIVES, RFVI31ON I Final Report (ICASE)
" CSCL 09B

52 p

Nqi-25644

Unc|as

G3/Ol 0020328 =

=_

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

ICASE INTERIM REPORTS

ICASE has introduced a new report series to be called ICASE lnlmim Reporls.

The series will complement tile more familiar blue ICASE reporls thai have been

distributed for many years. The blue reporls are. intended as preprints of

research that has been submitled for publicalion in either refereed journals or

conference proceedings. In general, the green Interim Report will no! be submil-

ted for publication, at least not in its printed form. It will be used for research

that has reached a certain level of maturity but needs additional refinement, fi_r

technical reviews or position statements, for bibliographies, and for compuler

software. The Interim Reports will receive lhe same dislribution ,'as the 1CAS! z,

Reports. They will be available upon request in Ihe future, and they may be

referenced in other publicalions.

Robert G. Voigl
l)ireclor

A Manual for PARTI Runtime Primitives

Revision 1

Raja Das and Joel Saltz and Harry Berryman*

Institute for Computer Applications in Science and Engineering,

NASA Langley Research Center,

Hampton VA 23065

Computer Science Department,

Yale University,

New Haven CT 06520

Abstract

Primitives are presented that are designed to help users efficiently program

irregular problems (e.g. unstructured mesh sweeps, sparse matrix codes, adap-

tive mesh partial differential equations solvers) on distributed memory ma-

chines. These primitives are also designed for use in compilers for distributed

memory multiprocessors. Communications patterns are captured at runtime,

and the appropriate send and receive messages are automatically generated.

*ICASE, NASA Langley Research Center, Hampton, Virginia. Supported by NASA Contract
No. NAS1-18605 while the author was in residence at ICASE, and by NSF grant ASC-8819374

o.*

111

PRL:_EDING PAGE BLANK NOT FILMED

1 Did Somebody Say PARTI?

1.1 Overview

PARTI stands for "Parallel Automated Runtime Toolkit at ICASE." Development

of PARTI has been carried out at Yale University as well as ICASE and hence has

been referred to as "PARTY" in some earlier papers. The PARTI runtime primitives

are designed to help users to efficiently program loops found in irregular problems

(e.g. unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differ-

ential equations solvers). These primitives are also designed for use in compilers for

distributed memory multiprocessors. In the context of the PARTI project, we are

also developing a variety of other tools including compilers for distributed machines.

These primitives are some of the basic building blocks we are using in our efforts.

The primitives in this distribution run on any of the iPSC/2 or iPSC/860 machines

produced by Intel Scientific Computing. They could easily be modified to run on most

distributed memory machines. This document describes the operation of the PARTI

primitives and gives several examples of how to use them. The rationale of the PARTI

system (the PARTI line, as it were) was presented in [2] and summarized in [4].

The mechanisms incorporated in these primitives have been outlined in [2], [5],

[4]. PARTI has been used in a variety of applications, including sparse matrix linear

solvers, adaptive computational fluid dynamics codes, and in a prototype compiler

[4] aimed at distributed memory multiprocessors.

1.2 Primitives Available in the Release

The PARTI system is divided into several levels. Level 0 primitives allow proces-

sors to access the distributed memory of a multiprocessor with a modicum of con-

venience. Level 1 primitives bind mapping information to arrays. This allows the

user to store and manipulate constructs that describe multiprocessor mappings of

distributed multidimensional arrays. Included with this distribution are the level 0

primitives outlined next.

The level 0 scatter allows each processor of a distributed memory machine to move

data to off-processor memory locations. The level 0 gather allows each processor to

obtain copies of data from memory locations in other processors. Level 0 primitives

are provided to support initialization and access of distributed translation tables.

Such distributed tables allow a user to assign globally numbered indices to processors

in an irregular pattern. By using a distributed translation table, it is possible to avoid

replicating records of where distributed array elements are stored in all processors.

Level 0 primitives also carry out off-processor accumulations; e.g. any processor can

add to the contents of an off-processor memory location.

1.3 Primitives that exist but are not yet distributed

There are additional level 0 primitives not included with this release that support local

caching of copies of off-processor data. These Level 0 primitives are presented in [3]

and will be available in future PARTI releases. Level 1 primitives, also not available

with this release, allow users to specify how distributed arrays are to be mapped

ontO sets of processors. The_]evel i primitlves supportS'read, write and accumulate

accesses to these mapped multidimensional arrays. The level 1 primitives also allow
users to dynamically remap distributed arrays. The Level 1 primitives are described

in [1]. It should be noted that Use of PARTi primitives do not interfere with access

to traditional message passing communications primitives. In particular, a user can

call all of the iPSC supplied routines when using PARTI.

2 Installation

2.1 Getting PARTI

PARTI can be had in either several shar files or one tar file. The tar file is in general

more convinient, but the shar files can be sent through the mail. PARTI can be

obtained by anonymous ftp from ra.cs.yale.edu, from netlib, or by contacting:

Raj a Das

ICASE

Mail Stop 132C

NASA Langley Research Center

Hampton, Va 06511

(804) 864-8004

raj a©icase, edu

If you have the PARTI tar file, just change to the directory where you wish to put

the PARTI subdirectory and type:

tar xof parti.tar

If you have the shar files, things are only mildly worse. You need the following
files: docs.shar,free.shar,matmult.shar, papers.shar,src.shar, tests.shar, unst.shar
and a makefile (called "makefile", oddly enough.) Put these files in the directory
whereyou want the PARTI subdirectory and type

makeunshar

2.2 Building PARTI

Either of the above installation procedures should create the following directory struc-

tures:

partl/docs documentation in latex, postscript and plain text

parti/examples/matmult sparse matrix multiplication described in Section B

parti/examples/unst sweep over unstructured mesh, described in section A.

parti/examples/free a conjugate gradient linear equation solver cg.c and cg_host.c

not discussed in this documentation. (Free prize included in every copy of

PARTI!). Also included is simple.c, a simple example involving several of the

primitives.

parti/papers some of the relevant papers

parti/src source for the PARTI primitives

parti/tests test programs to verify correct installation

A makefile should be present in the PARTI directory. At the beginning of this

makefile are several macros to be modified by the user.

NFLAG This macro is passed to the C compiler and linker when compiling and/or

linking node programs. It should have one of the following values:

-node -sx for iPSC/2 machines with weitek floating point accelerators

-node -i860 for iPSC/860 machines

-node for vanilla iPSC/2 machines

3

NARC This macro indicates the archive to be used in creating the PARTI library.

It should be set to one of the following:

ar for any iPSC/2

ar860 for an iPSC/860

LIB This macro should be set to the directory where the party library will be in-

stalled. It is prudent to use the full path name here. This directory must exist

before the system is installed.

INCL This macro should be set to the directory where the PARTI include files will

reside. It is prudent to use the full path name here. This directory must exist

before the system is instalie&

NPROCS This indicates the largest number of processors that the tests should be

run on. Eight and sixteen are good values.
: z

NODECC This macro should be set to the C compiler which will compile the node

programs. The default compiler (cc) is always a correct choice. The pgce

compiler may also be used where appropriate.

NODEF77 This macro should be set the Fortran compiler to be used to compile

the node programs. The default compiler (f77) is always a correct choice. The

pgf77 compiler may be used where appropriate.

Make sure that the directories pointed to by LIB and INCL exist. If they do not, any

attempt to install the party system there will fail. There are several objects to make.

Typing the following make commands in the listed order should be sufficient to install

and check the PARTI system on your computer.

L E

make will compile the PARTI library but not install it in the designated directories.

make install will install the PARTI system in the designated directories.

make clean will remove object and executable file from various subdirectories.

make test will run several tests to see if everything has been compiled correctly.

3 Function Descriptions

3.1 Header Files

There are two header files which go with the PARTI library. The first is patti, h. This

file contains the definitions of all structures, macro definition and function definitions

needed to run the PARTI primitives. It must be included in all C programs that use

the PARTI system. The second include file, patti_more.h, is used only when the

system is compiled. It defines such things as message types, and static buffer lengths.

It should not be necessary to include this file in applications which use PARTI. No

header files need be included in Fortran applications.

Two of the primitives schedule and build_translat ion_table are functions that

carry out preprocessing, schedule and build_translation_table allocate elements

of structures schedule_struct and trans_table and then return pointers to struc-

tures. The above structures are defined in parti.h; macro definitions define struct

schedule_struct as SCHED and define struct trans_table as TTABLE. parti.h

also defines macros STRIPED and BLOCKED used in the procedure build_translat ion_table

3.2 Level 0 primitives

Level 0 gathers and scatters are accomplished by using three routines: Scheduler,

Gather, and Scatter.

Scheduler on each processor is passed a list of indices Kj into aloc on each proces-

sor j. Scheduler produces a schedule S that controls the data that are to be fetched

off-processor by Gather or scattered off-processor by Scatter.

On each processor, Gather inputs

1. a buffer into which the fetched elements are to be placed

2. a pointer to local array aloc

3. the schedule S produced by Scheduler

In Fig. 1 we introduce a running example to illustrate the Scheduler, Gather and

Scatter. In this example we have three processors, each processor is passed a set of

off-processor indices.

Gather executes sends and receives that fetch from processor j the appropriate

elements from the array aloc on processor j. Then it places these elements into

Figure 1: Scheduler Example

Scheduler:

E.g.

inputs list of indices on each processor

outputs a schedule S

. :- .

processor 1: (processor 2, index 5), (processor 3, index 7)

processor 2: (processor i, indices 4, 5, 6), (processor 3 index 2)

processor 3: (processor 1, index 1);(processor 2 indices 1, 3, 4)

the user-supplied buffer. Fig. 2 continues the running example begun in Fig. 1. On

processor j the array aloc is initialized as aloc(i) = j • 100 + i for 1 < i. We

depict the contents of buffer on each processor after Gather is executed.

Scatter is passed

1. a buffer from which each scattered datum is to be obtained

2. a pointer to local array al0c

3. the schedule S produced by Scheduler

Scatter executes sends and receives that put on processor j the appropriate elements

from the buffer. Then Scatter places these elements into the appropriate elements of

array aloc on processor j. Fig. 3 continues the running example. We assume that on

processor j, we initialize buffer as buffer(i) = j * 100 + i for 1 _< i, we initialize

aloc so that aloc(i) = O. After Scatter executes, we depict, on each processor j
the contents of aloc.

3.2.1 Functioning of the Scheduler, Gather and Scatter

Both the procedures Scatter and Gather have three stages. They permute data into

buffers to be sent. They perform the needed communication, then they perform

another permutation.

6

Figure 2: Gather Example

Gather:

inputs schedule S produces by Scheduler

inputs pointer to local array aloc from which gathered elements are to be

fetched

outputs fetched elements placed in local array buffer

E.g. assume

processor I: aloc(i) = I00 + i ,I _<i

processor 2: aloc(i) = 200 + i ,i _< i

processor 3: aloc(i) = 300 + i ,i _< i

Gather returns:

buffer Processor Processor

1 2

1

2

3

4

205

307

104

105

106

3O2

Processor

3

101

201

203

204

Figure 3: Scatter Example

Scatter:

inputs schedule S produces by Scheduler

inputs elements to be scattered, these are placed in local array buffer

outputs scattered elements, these are placed in local array aloe

E.g. assume

processor 1: buffer(i)= lO0

processor 2: buffer(i)= 200

processor 3: buffer(i) = 300

+i,i_<i

+i,i<i

+i,i_<i

processor 1: aloe(i) = 0, 1 _< i

processor 2: aloe(i) = 0, i < i

processor 3: aloe(i) = 0, 1 < i

After Scatter is called:

aloc

1

2

3

4

5

6

7

Processor Processor Processor

1 2 3

301

0

0

201

202

203

0

302

0

303

304

101

0

0

0

204

0

0

0

0

102

The schedulerfirst determineshow many messageseachprocessormust sendand
receiveduring the data exchangephase. Definedon processorj is an array nmsgsJ.
Processorj setsthe valueof nrasgsJ(i) to I if it needsdata from processori or to 0
if it doesnot. The schedulerthen replacesnmsgsJwith the element-by-elementsum
nmsgsJ(i) +- _-_knmsgsk(i) • This operation utilizes a function that imposes a fan-in

tree to find the sums. Since the resulting sum is kept in nmsgsJ, at the end of the

fan-in on every processor, nmsgsJ(±) is the number of messages that processor must

send during the exchange phase. Next, each processor sends a request list to every

other processor. The request list sent from processor p to processor q contains the

indices of data needed by processor p that are stored on processor q.

The number of non-empty request lists each processor will receive is equal to

the number of messages that the processor will send in the gather or scatter phase.

Each request list is placed in an array indexed by the processor from which the list

came. When the scheduler is finished, each processor has an array of request lists

obtained from other processors. The j th element of this array contains the request

list obtained from processor j. At this point in the execution, each processor i knows

which elements of aloc local to processor i that must be sent to other processors.

This information is used to generate the schedule S of pairs of send and receive

statements. These send/receive pairs will exchange the requested data for either a

gather or a scatter. The gather or the scatter is passed the schedule S with the

required buffer space. It then carries out the required communication.

3.3 schedule()

This procedure carries out the preprocessing needed for carrying out optimized gather

exchanger and scatter exchanger routines. Every processor must participate in this

procedure call. On each processor, a schedule is passed a list of processors and local

indices from which a gather procedure on that processor can later obtain data (or to

which a scatter procedure on that processor can later write data), schedule returns

a pointer to a structure of type SCHED, this pointer is used in gather, scatter and

scatter_FUNC operations (Sections 3.4, 3.5, 3.6).

Synopsis

SCHED *schedule(local,proc,ndata)

Parameter declarations

int *local local index to be gathered from or scattered to

int *proc processors to be gathered from or scattered to

int ndata number of data involved in gather or scatter

Return value

Returns pointer to structure of type SCHED which can be used in PREFIXgather,

PREFIXscatter, PREFIXscatter_add, PREFIXscatter_sub, PREFIXscatter-mult.

Example

Node 0 schedules a fetch of elements 1 and 2 from a (so far unspecified) array on

node 1; node 1 schedules a fetch of element 1 from an array on node 0 and 0 from

an array on node 1.

int local[2], proc[2], ndata;

SCHED *schedinfo ;

if (mynode ()==0) {

proc[O] = I;

local[O] = i;

proc[l] = 1;

local[l] = 2;

ndata = 2;

if (mynode ()== i){

proc[O] = O;

local[O] = I;

proc[l] = I;

local[l] = O;

ndata = 2 ;

}

lO

schedinfo = schedule(local,proc,ndata);

3.4 PREFIXgather()

PREFIX can be d (double precision), i (integer) , f (floating point) or c (character)

This procedure is the gather exchanger procedure described above and in [1]. PRE-

FIXgather uses a schedule produced by a call to schedule, the schedule is passed to

PREFIXgather in structure SCHED schedinfo. Copies of data values obtained from

other processors are placed in memory pointed to by buffer. Also passed to PREFIX

gather is a pointer to the location from which data is to be fetched on the calling

processor. This pointer is designated here as aloc, aloc corresponds to alod above

and in [1].

Synopsis

void PREFIXgather(schedinfo,buffer,aloc)

Parameter Declarations

SCHED *schedinfo information obtained from schedule's preprocessing of ref-

erence pattern

TYPE *buffer pointer to buffer for copies of gathered data values

TYPE *aloe location from which data is to be fetched from calling processor

Return Value

None

Example

11

We assumethat schedulehas alreadybeen called with the parameterspresented
in Section3.3. Our examplewill assumethat we wish to gather double precision
numbers,i.e. that wewill be calling dgather. On eachprocessor,*aloc points to

the arrays from which valuesare to be obtained. *buffer points to the location
into which will be placedcopiesof data valuesobtained from other processors.

double buffer [2] ,aloc [3] ;

SCHED *schedinfo ;

for (i-O ;i<3; i++) {

aloc[i] = mynode() + O.l*i;

}

dgather(schedinfo,buffer,aloc);

On processor 0, buffer[0] and buffer[i] are now equal to 1.1 and 1.2. On processor

1, buffer[0] and buffer[l] are now equal to 0.1 and 1.0.

3.5 PREFIXscatter()

PREFIX can be d (double precision), i (integer) , f (floating point) or c (character).

This procedure is the scatter exchanger procedure described above and in [1]. PRE-

FIXscatter uses a schedule produced by a call to schedule, the schedule is passed to

PREFIXscatter in structure SCHED schedinfo. Copies of data values to be scattered

to other processors are placed in memory pointed to by buffer. Also passed to PRE-

FIX scatter is a pointer to the location to which copies of data are to be written

on the calling processor. This pointer is designated here as aloc, aloc corresponds to

aloc i above and in [1].

12

Synopsis

void PREFIXscatter (schedinfo,buffer,aloc)

ParameterDeclarations

SCHED schedinfo information obtained from schedule'spreprocessingof refer-
encepattern

TYPE *buffer points to data valuesto be scatteredfrom a given processor

TYPE *aloe points to first memory location on calling processorfor scattered
data

Return Value

None

Example

We assumethat schedulehas already beencalled with the parameterspresented
in Section3.3. Our examplewill assumethat we wish to scatter double precision
numbers,i.e. that wewill be calling dscatter. On eachprocessor,*aloc points to
the arrays to which values are to scattered. *buffer points to the location from
which will be obtained data that will be scatteredThe processorand local_array
index to which the valuesare to be scatteredwasdesignatedduring an earlier call
to schedule.

double buffer [2], aloc[3] ;

SCHED *schedinfo ;

for (i=O ;i<3 ;i++) {

aloc[i] = i0.0;

}

if (mynode ()== O){

buffer[O] = 444.44;

13

buffer [1] = 555.55;

}

if (raynode()==I) {

buffer[O] = 666.66;

buffer[I] = 777.77;

}

dscatter(schedinfo,buffer,aloc);

On processor 0, the first three elements of aloc are 10.0, 666.66 and 10.0.

processor 1, the first three elements of aloc are 777.77, 444.44 and 555.55.

On

3.6 PREFIXscatter_FUNC()

=

PREFIX can be d (double precision), i (integer) , f (floating point) or c (character).

FUNC can be add, sub or mult . PREFIXscatter stores data values to specified

locations. PREFIXscatter_FUNC allows one processor to specify computations that

are to be performed on the contents of given memory location of another processor.

The procedure is in other respects analogous to PREFIXscatter.

Synopsis

void PREFIXscatter_FUNC(schedinfo,buffer,aloc)

Parameter Declarations

SCHED *schedinfo information obtained from schedule's preprocessing of ref-

erence pattern.

TYPE *buffer points to data values that will form operands for the specified

type of remote operation.

TYPE *aloe points to first memory location on calling processor to be used as

targets of remote operations.

14

Return Value

None

Example

We assumethat schedulehas alreadybeen called with the parameterspresented
in Section 3.3. Our examplewill assumethat we wish to scatter and add double
precision numbers,i.e. that we will be calling dscatter_add. On each processor,

*aloc points to the arrays to which valuesare to be scatteredand added. *buffer
points to the location from which will be obtained the valuesto be scatteredand
added. The processorand local_arrayindex to which the valuesare to bescattered
and addedwasdesignatedduring an earlier call to schedule.

double buffer [2], aloc[3] ;

SCHED *schedinfo ;

for (i=O ;i<3 ;i++) {

aloc [i] = I0.0;

}

if (mynode ()==0) {

buffer[O] = 444.44;

buffer[l] = 555.55;

}

if (mynode ()== i){

buffer[O] = 666.66;

buffer [I] = 777.77;

}

dscatter_add(schedinfo,buffer,aloc);

15

On processor O, the first three elements of aloc are I0.0, 676.66 and 10.0. On

processor 1, the first three elements of aloc are 787.77, 454.44 and 565.55.

3.7 build_translation_table()

In order to allow a user to assign globally numbered indices to processors in an irregu-
lar pattern, it is useful to be able to define and access a distributed translation table.

By using a distributed translation table, it is possible to avoid replicating records of

where distributed array elements are stored in ailprocessors_ The distributed table

is itself partitioned in a very regular manner. A processor that seeks to access an

element I of a irregularly distributed data array is able to compute a simple function

that designates a location in the distributed table; the location of the actual array
element sought is obtained from the distributed table.

The procedure build_translation_table constructs a distributed translation table.

It assumes that distributed array elements are globally numbered. Each processor

passes build_translation_table a set of indices for which it will be responsible. The

distributed translation table may be striped or blocked across the processors. With

a striped translation table, the translation table entry for global index I is stored in

processor (I modulo number_of_processors); the local index of the translation table

is (I/number-of_processors). In a blocked translation table, translation table entries

are partitioned into a number of equal sized ranges of contiguous integers, these

ranges are placed in consecutively numbered processors. With blocked partitioning,

the block corresponding to index I is (I/B) and the local index is (I modulo B),

where B is the size of the block. Let M be the maximum global index passed to

build_translation_table by any processor and NP represent the number of processors;
B = rM/NP].

build_translation_table returns a pointer to a structure of type TTABLE; this

pointer is used in dereference, defined in section 3.8.

Synopsis

TTABLE *build_translation_table(part ,indexarray, ndata)

Parameter Declarations

16

int part how translation table will bemapped- may beBLOCKED or STRIPED

int *indexarray eachprocessorP specifieslist of globally numberedindices for
which P will be responsible

int ndata number of indices for which processorP will be responsible

Return Value

structure of type TTABLE; this structure containsa given processor'sportion of
the distributed translation table

Example

An exampleto demonstratethe useof both build_translation_tableand dereference
can be found in Section 3.8.

3.8 dereference()

dereferenceaccessesthe distributed translation table constructedin build_translation_table.
dereferenceis passeda pointer to a structure of type TTABLE; this structure de-

fines the irregularly distributed mappingcreatedin procedurebuild_translation_table.
dereferenceispassedanarraywith global indicesthat needto be locatedin distributed
memory; dereferencereturns arrays local and proc that contain the processorsand
local indicescorrespondingto the global indices.

Synopsis

void dereference(index_table,global,local,proc,ndata)

Parameter declarations

int *global list of global indiceswewish to locate in distributed memory
int *local local indicesobtained from the distributed translation table that cor-

respond to the global indicespassedto dereference

int *proc array of distributed translation table processorassignmentsfor each
global index passedto dereference

17

Table 1: Values

Processor proc[O]

0 0

1 1

obtained by dereference

local[O] proc[1] local[l]
0 1 0

1 0 1

int ndata number of elements to be dereferenced

TTABLE *index_table distributed translation table datastructure created in

build_translation_table

Return value

None

Example

A one dimensional distributed array is partitioned in some irregular manner so we

need a distributed translation table to keep track of where one can find the value

of a given element of the distributed array.

In the example below, we initialize a translation table. Processor 0 calls build_translatlon_tabl

and assigns indices 0 and 3 to processor 0, processor 1 calls build_translation_table

and assigns indices 1 and 2 to processor 1. The translation table is partitioned

between processors in blocks.

Processor 0 then uses the translation table to dereference global variables 0 and 1,

processor 1 uses the translation table to dereference global variables 2 and 3. On

each processor, dereference carries out a translation table lookup. The values of

proc and local are returned by dereference are shown in Table 1). The user gets

to specify the processor to which each global index is assigned, note however that

build_translation_table assigns local indices.

#include <stdio.h>

#include "patti .h"

main()

{ ::

int size, i, *index_array;

18

int *deref_array;

int *local, *proc;

TTABLE *table;

size = 2;

index_array = (int *) malloc(sizeof(int)*size);

deref_array = (int *) malloc(sizeof(int)*size);

local = (int *) malloc(sizeof(int)*size);

proc = (int *) malloc(sizeof(int)*size);

/*Assign indices 0 and 3 to processor 0 */

if (mynode ()==0)

{

index_array[O] = O;

index_array[I] = 3;

}

/*Assign indices i and 2 to processor I _/

if (mynode ()== I)

{

index_array[O] = i;

index_array[l] = 2;

}

/* set up a translation table */

table - build_translation_table(BLOCKED,index_array,size);

/* Processor 0 seeks processor and local indices

for global array indices 0 and i */

if (mynode ()==0)

{

deref_array[O] = O;

deref_array[l] = i;

}

/* Processor I seeks processor and local indices

19

for global array indices 2 and 3 */

if (mynode ()==I)

{

deref_array [0] = 2 ;

deref_array[l] = 3;

}

/* Dereference a set of global variables */

dereference(table,deref_array,local,proc,size);

/* local and proc return the processors and local indices where

global array indices are stored.

In processor O, proc[O] = O, proc[l] = I, local[O] = 0 , local[l] = O;

In processor i, proc[O] = 1, proc[l] = O, local[O] = i , local[l] = I;

*/

}

Now assume that processor 0 needs to know to values of distributed array elements

0,1, and 3 while processor 1 needs to know the value of element 2. We call deref-

erence to find the processors and the local indices that correspond to each global

index. At this point schedule can be called and gathers and scatters carried out.

3.9 localize()

When loops access data residing off processor, some pre-processing is necessary before

these loops can be executed. The pre-processing involves setting a schedule to bring

in the off-processor data, and changing all the global references to !Qca! ones. The

primitivelocalize makes Calis todereference and schedule to do- al]:the_ecessary

processing. The schedule pointer returned by localize is used to gather data and

store it at the end of the local array. This schedule pointer is created such that

multiple copies of the same data is not brought in during the gather phase. The

elemination of duplicates is achieved by using a hash table. Localize returns the

local reference string corresponding to the global references which are passed as a

2O

parameter to it. The number of off processor data elements are also returned by

localize so that one can allocate enough space at the end of the local array.

Synopsis

void localize(tabptr,lsched,global_refs, local_refs,ndata,n_off_proc,my_size)

Parameter Declarations

TTABLE *tabptr pointer to the distributed translation table, build for the local

array being dealt with.

SCHED **lsched pointer to the data structure for schedule, which stores all the

send receive information (returned by localize).

int *global_refs pointer to the array which stores all the global reference string.

int *local_refs pointer to the array which stores the local reference string corre-

sponding to the global references (returned by localize).

int ndata number of global references.

int *n_off_proc address of the number of off processor data (returned by localize).

int my_size the size of my local array.

Return Value

None

Example

Nodes 0 and 1 takes part in a computation which involves a loop which refers to

data residing off processor. The irregularly distributed arrays are x and y. Both

the arrays have the same distribution pattern. Node 0 contains global indices 0, 1

and 2, while node 1 contains 3, 4, 5, 6 and 7. During the actual computation both

nodes 0 and 1 needs to access certain elements of the y array. The global indices

that node 0 has to access is 3, 7 and 1, and node 1 has to access 4, 2, 3, 0 and 6.

Now we will present the inspector-executor code for the senario described above.

21

#define BLOCKED I

int i,ndata,indirection;

int local[5],global_ref[5],local_ref[5];

double x[S],y[10];

TTABLE _tabptr;

SCHED *schedptr;

/* the following is the inspector code */

if (mynode () =- 0){

local[O] = O;

local [i] = 1;

local [2] = 2;

ndata - 3;

tabptr = build_translation_table(BLOCKED,local,ndata) ;

global_ref[O] = 3;

global_ref[1] = 7;

global_ref [2] = 1;

localize (t abpt r, aschedptr, giobal_ref,

local_ref, ndata, &n_off_proc, 3) ;

} else {

local[O] = 3;

local[l] = 4;

local [2] = 5;

local [3] = 6;

local [4] = 7;

ndata = 5;

tabptr = build_translation_table(BLOCKED,local,ndata) ;

global_ref [0] = 4;

global_ref[1] = 2;

global_ref[2] = 3;

global_ref [3] = O;

global_ref [4] = 6;

localize (t abpt r, &schedptr, global ref,

22

local_ref,ndata,an_off_proc,5);

/* end of the inspector. Let us assign values to

the distributed arrays */

for (i=O ;i<ndat a; i++) {

x[i] --i;

y[i] = 2.i;

}

/* the following is the executor code */

dgather (schedptr, &y [ndata], y) ;

for (i=O ;i<ndata; i++) {

indirection = local_ref [i] ;

x[i] = x[i] + 3 * y[indirection];

}

/* end of the executor code */

After the end of the computation in processor 0 the values of x[0], x[1] and x[2]

are 0.0, 25.0 and 8.0 respectively. On processor 1 the values of x[0], x[2], x[3], x[4]

and x[5] are 6.0, 13.0, 2.0, 3.0 and 22.0 respectively. For a detailed example in

FORTRAN refer to appendix B.

4 Calling the primitives from FORTRAN

This section shows how the primitives can be used with FORTRAN. We will go

through the examples described in section 3 using the FORTRAN version of the

PARTI primitives.

23

4.1 function ifschedule()

This function returns an integer which can be used to refer to the schedule corre-

sponding to the input data.. This integer is used in gather, scatter and scatter_FUNC

operations (Sections 4.2, 4.3, 4.4).

!=

Synopsis

function ifschedule(ilocal,iproc,ndat a)

Parameter declarations

integer iloeal() local indices to be gathered from or scattered to

integer iproe() processors to be gathered from or scattered to

integer ndata number of data elements involved in gather or scatter

Return value

Returns a reference to a schedule which can be used in PREFIXfgather, PREFIXf-

scatter, PREFIXfscatter_add, PREFIXfscatter_sub, PREFIXfscatter_znult.

Example

Node 0 schedules a fetch of elements 1 and 2 from a (so far unspecified) array on

node i; node 1 schedules a fetch of element 1 from an array on node 0 and 3 from

an array on node 1.

logical ifschedule

integer ilocal(2),

integer ischedinfo

iproc(2), ndata

if(mynode().eq.O){

iproc(1) = I

ilocal(1) = I

24

iproc (2) = I

ilocal(2) = 2

ndata = 2

}

if(mynode().eq.i){

iproc(1) = 0

ilocal(1) = I

iproc(2) = i

ilocal(2) = 3

ndata = 2

}

ischedinfo = ifschedule(ilocal,iproc,ndata)

4.2 subroutine PREFIXfgather()

PREFIX can be d (double precision), i (integer), f (real) or c (character). For more

information refer to Section 3.4.

Synopsis

subroutine PREFIXfgather(ischedinfo,buffer,aloc)

Parameter Declarations

integer ischedinfo refers to the relevant schedule

TYPE buffer() pointer to buffer for copies of gathered data values

TYPE aloc 0 location from which data is to be fetched from calling processor

Return Value

25

None

Example

We assume that schedule has already been called with the parameters presented

in Section 4.1. Our example will assume that we wish to gather double precision

numbers, i.e. that we will be calling dfgather. On each processor, aloc points to

the arrays from which values are to be obtained, buffer points to the location into

which will be placed, copies of data values obtained from other processors.

double precision buffer(2), aloc(3)

integer ischedinfo

10

do I0 i=1,3

aloc(i) = mynode() + O.!*i

continua

call dfgather(ischedinfo,buffer,aloc)

On processor 0, buffer(I) and buffer(2) are now equal to 1.1 and 1.2. On processor

1, buffer(i) and buffer(2) are now equal to 0.1 and 1.3.

4.3 subroutine PREFIXfscatter()

PREFIX can be d (double precision), i (integer), f (real) or c (character). For more
information refer to Section 3.5.

Synopsis

subroutine PREFIXfscat ter(ischedinfo,buffer,aloc)

26

Parameter Declarations

integer ischedinfo refersto the relevantschedule.

TYPE buffer() points to data valuesto be scatteredfrom a given processor

TYPE aloc() points to first memory location on calling processorfor scattered
data

Return Value

None

Example

We assumethat schedulehas alreadybeen calledwith the parameterspresented
in Section4.1. Our examplewill assumethat wewish to scatter double precision
numbers, i.e. that we will be calling dfscatter. On each processor,aloc points
to the arrays to which valuesare to scattered, buffer points to the location from
which will be obtained data that will be scatteredThe processorand local_array
index to which the valuesare to bescatteredwasdesignatedduring an earlier call
to schedule.

double precision buffer(2), aloc(3)

integer ischedinfo

i0

do I0 i=i,3

aloc(i) = i0.0

continue

if (mynode ().eq. O) then

buffer(1) = 444.44

buffer(2) = 555.55

endif

if(mynode().eq.l) then

buffer(1) = 666.66

27

buffer(2) = 777.77

endif

call dfscatter(ischedinfo,buffer,aloc)

On processor 0, the first three elements of aloc are 666.66, 10.0 and 10.0. On

processor 1, the first three elements of aloc are 444.44, 555.55 and 777.77.

4.4 subroutine PREFIXfscatter_FUNC()

PREFIX can be d (double precision), i (integer), f (real) or c (character). For more
information refer Section 3.6.

Synopsis

subroutine PREFIXfscat ter_FUNC (ischedinfo,buffer,aloc)

Parameter Declarations

integer ischedinfo refers to the relevant schedule.

TYPE buffer() points to data values that will form operands for the specified

type of remote operation.

TYPE aloe() points to first memory location on calling processor to be used as

targets of remote operations.

Return Value

None

Example

28

We assumethat schedulehas alreadybeen called with the parameterspresented
in Section 4.1. Our examplewill assumethat we wish to scatter and add double
precision numbers,i.e. that we will be calling dfscatter_add. On eachprocessor,
aloc points to the arrays to which valuesare to be scatteredand added, buffer
points to the location from which will be obtained the valuesto be scatteredand
added. The processorand local_arrayindex to which the valuesare to bescattered
and addedwasdesignatedduring an earlier call to schedule.

double precision buffer(2), aloc(3)

integer ischedinfo

I0

do I0 i=1,3

aloc(i) = i0.0

continue

if(mynode().eq.O) then

buffer(1) = 444.44

buffer(2) = 555.55

endif

if(mynode().eq.l) then

buffer(1) = 666.66

buffer(2) = 777.77

endif

call dfscatter_add(ischedinfo,buffer,aloc)

On processor 0, the first three elements of aloc are 676.66, 10.0 and 10.0. On

processor 1, the first three elements of aloc are 454.44, 565.55 and 787.77.

29

4.5 function ifbuild_translation_table()

For detailed information refer to Section 3.7.

Synopsis

function ifbuild_translation_table(part,indexarray, ndat a)

Parameter Declarations

integer part how translation table will be mapped - may be BLOCKED or
STRIPED

integer indexarray() each processor P specifies list of globally numbered indices

for which P will be responsible

integer ndata number of indices for which processor P will be responsible

Return Value

integer which refers to the translation table corresponding to the input data.

Example

An example to demonstrate the use of both build_translation_table and dereference

can be found in Section 4.7.

4.6 subroutine flocalize()

For more information refer to Section 3.9

Synopsis

subroutine flocalize(itabptr,ilsched,iglobal_refs, ilocal_refs,ndata,n_off_proc,my_size)

Parameter Declarations

integer itabptr refers to the relevant translation table pointer.

3O

integer

integer

integer

ing

integer

integer

integer

Return Value

None

Example

ilsehed refers to the relevant schedule pointer (returned by localize).

iglobal_refs() the array which stores all the global reference string.

ilocal_refs 0 the array which stores the local reference string correspond-

to the global references (returned by localize).

ndata number of global references.

n_off_proc number of off-processor data (returned by localize).

my_size the size of my local array.

Nodes 0 and 1 takes part in a computation which involves a loop which refers to

data residing off processor. The inspector and the executor code is presented here.

integer i,ndata,indirection

integer local(5),iglobal_ref(5),ilocal_ref(5)

double precision x(5),y(10)

integer itabptr

integer ischedptr

logical ifbuild_translation_table

c the following is the inspector code

BLOCKED = 1

if(mynode().eq.O) then

ilocal(1) = 1

ilocal(2) = 2

ilocal(3) ffi3

ndata ffi3

31

c

iO

mysize _ 3

itabptr = ifbuild-translation_table(BLOCKED,ilocal,ndata)

iglobal_ref(1) = 4

iglobal_ref(2) = 8

iglobal_ref(3) _ 2

call flocalize(itabptr,ischedptr,iglobal_ref,

ilocal_ref,ndata,n_off_proc,mysize)
else

ilocal(1) - 4

ilocal(2) = 5

ilocal(3) = 6

ilocal(4) - 7

ilocal(5) = 8

ndata = 5

mysize = 5

itabptr _ ifbuild_translation_table(BLOCKED,ilocal,ndata)

iglobal_ref(1) = 5

igloba1_ref(2) - 3

iglobal_ref(S) = 4

iglobal_ref(4) = i

iglobal_ref(5) = 7

call flocalize(itabptr,ischedptr,igiobal_ref,

ilocal_ref,ndata,n off proc,mysize)
endif

do i0 i=l,ndata

iglobal_ref(i) = ilocal_ref(i)

continue

c end of the inspector. Let us assign Values to

c the distributed arrays

20

do 20 i=l,ndata

x(i) = i

y(i) = 2.i

continue

$2

c the following is the executor code

call dfgather(ischedptr,y(ndata),y(1))

do 30 i=l,ndata

indirection = iglobal_ref(i)

x(i) = x(i) + 3 * y(indirection)

30 continue

c end of the executor code

After the end of the computation in processor 0 the values of x(1), x(2) and x(3) are

25.0, 50.0 and 15.0 respectively. On processor 1 the values of x(1), x(2), x(3), x(4)

and x(5) are 31.0, 20.0, 27.0, 10.0 and 47.0 respectively. For a detailed example in

FORTRAN refer to appendix B.

4.7 subroutine fdereference()

For more information about this section refer to Section 3.8.

Synopsis

subroutine fdereference(index_table,global,local,proc,ndata)

Parameter declarations

integer index_table refers to the relevant translation table

integer global() list of global indices we wish to locate in distributed memory

integer local() local indices obtained from the distributed translation table that

correspond to the global indices passed to dereference

integer proc 0 array of distributed translation table processor assignments for

each globM index passed to dereference

integer ndata number of elements to be dereferenced

33

Table
Processor

0
1

2: Values
proc(1)

0
1

obtained by dereference

local(l) proc(2)local(2)
1 1

2 0

Return value

None

Example

A one dimensional distributed array is partitioned in some irregular manner so we

need a distributed translation table to keep track of where one can find the value

of a given element of the distributed array.

In the example below, we initialize a translation table. Processor 0 calls build_translation_tabl

and assigns indices 1 and 4 to processor 0, processor 1 calls build_translation_table

and assigns indices 2 and 3 to processor 1. The translation table is partitioned

between processors in blocks.

Processor 0 then uses the translation table to dereference global variables 1 and 2,

processor 1 uses the translation table to dereference global variables 3 and 4. On

each processor, dereference carries out a translation table lookup. The values of

proc and local are returned by dereference are shown in Table 2). The user gets

to specify the processor to which each global index is assigned, note however that

build_translation_table assigns local indices.

c

program dref

integer size, i, index_array(2)

integer ideref_array(2)

integer ilocal(2), iproc(2)

logical ifbuild_translation_table

Assign indices I and 4 to processor 0

34

c

c

c

c

c

if (mynode() .eq.O) then

index_array (i) = 1

index_array(2) = 4

endif

Assign indices 2 and 3 to processor I

if(mynode().eq.l) then

index_array(1) = 2

index_array(2) z 3

endif

set up a translation table

BLOCKED = 1

size = 2

itable = ifbuild_translation_table(BLOCKED,index_array,size)

Processor 0 seeks processor and local indices

for global array indices 0 and I */

if(mynode().eq.O) then

ideref_array(1) = I

ideref_array(2) = 2

endif

Processor I seeks processor and local indices

for global array indices 2 and 3 */

if(mynode().eq.l) then

ideref_array(1) = 3

ideref_array(2) = 4

endif

Dereference a set of global variables

call fdereference(itable,deref_array,local,proc,size)

$5

c local and proc return the processors and local indices where

c global array indices are stored.

c In processor O, proc(1) = O, proc(2) = I, local(1) = 0

c In processor I, proc(1) = I, proc(2) = O, local(l) = I

stop

end

, local(2) = 0

, local(2) - I

Now assume that processor 0 needs to know to values of distributed array elements

1,2, and 4 while processor 1 needs to know the value of element 3. We call deref-

erence to find the processors and the local indices that correspond to each global

index. At this point schedule can be called and gathers and scatters carried out.

5 Acknowledgements

We would like to thank Seema Hiranandani, Jeff Scroggs and Janet Wu for their

help in debugging the primitives presented here. We also thank Janet Wu for her

formulation of the build_translation_table primitive. We thank Dimitri Mavriplis for

his continuing input during the development of the primitives and also for letting us

use his code in the FORTRAN example shown in the appendix. We also thank Eugene

Poole and Nahil Sobh for letting us use their matrix-vector multiplication code shown

in the appendix. We would llke to thank Adam Rifkin for his careful proofing of this

manual. Finally, we would like to thank Bob Voigt and Martin Schultz for their

support during this project's long (and continuing) incubation period. It takes time

to put together a good PARTI!

A Sweep over the Edges of an Unstructured Mesh

This code can be found in the directory examples/unst. This goes through the whole

process of setting up the inspector and then the subroutine executor is called to do the

actual computation. There is a driver program which is included in the distribution

but not added in this section. The executor is a loop which has been taken out of

a real CFD code, where the loop is over the edges of the mesh. In the subroutine

36

executor, if we remove the calls to gather and scatter_add then the piece of code looks

identical to the sequential version.

C

c The subroutines inspector and executor for sweep over an

c arbitrary unstructured mesh is shown below.

c

c There is a driver code which calls these two subroutines after

c reading in the mesh structure and initialization data. This

c shows how the different PARTI primitives can be called

c from FORTRAN.

C

C

C

subroutine inspector(ledge,myvals,nde)

C

C --

#include "commonl .F"

common/node/ ntotnodes,nonode,noedge

common/sched/ lesched

common/offproc/ ne_off_proc

C

integer nde(ledge,2)

integer myvals(nonode)

C

c...... Local Variables

C

integer ig_ref_e(nge)

integer locale(nge)

logical ifbuild_translation_table

C

c...... Build the translation table

37

c

c

c

c

2O

c

C

c

itabptr

Setup global references for edge loop

do 20 i = 1,noedge

ig_ref_e(i) = nde(i,l)

ig_ref_e(noedge+i) = nde(i,2)

continue

iecount = 2 * noedge

= ifbuild_translat ion_t able (I ,myvals, nonode)

4O

Setup schedule and change global ref. to local ref.

call flocalize(itabptr,lesched,ig_ref_e,locale,

iecount,ne_off_proc,nonode)

do 40 i = 1,noedge

nde(i,l) = locale(i)

nde(i,2) = locale(noedge+i)

continue

return

end

c

c

c

c

subroutine executor(ledge,lnode,nde,gnorm,w,p,dtl,iflop)

c

c

c

real*8 rm,al,yaw,gamma,rhoO,pO,eiO,hO,cO,uO,vO,wO

real*8 cfl,bc,visO,visl,vis2,hm,smoop

common/node/ ntotnodes,nonode,noedge

38

c

common/sched/ lesched

common/offproc/ ne_off_proc

common/tsp/ cfl,bc,visO,visl,vis2,hm,smoop,ncycsm

common/flw/ rm,al,yaw,gamma,rhoO,pO,eiO,hO,cO,uO,vO,wO

integer nde(ledge,2)

real*8 gnorm(ledge,5)

real*8 dtl(Inode)

real*8 w(lnode,5),p(lnode)

c

c--Local variables

c

real*8 ccl,cc2,csl,cs2,al,a2,qs,fluxl,flux2

c

c--Initialize Time Step

c

c

C----

c

50

do 50 i=l,nonode

dtl(i) - o.omo

continue

Do all the Gathers

do 60 kk = 1,4

call dfgather(lesched,w(nonode+l,kk),w(1,kk))

60 continue

call dfgather(lesched,p(nonode+l),p(1))

do 63 i = l,ne_off_proc

dtl(nonode+i) _ O.ODO

63 continue

c

c--Compute Field Time-Steps

c

do 500 i=l,noedge

nl = nde(i, I)

n2 = nde(i ,2)

ccl =

Using Edge Format

dsqrt (gamma*p (nl)/w (nl, 1))

39

50O

C

C _

c

cc2 = dsqrt(gamma*p(n2)/w(n2,1))

cs! - ccl*gnorm(i,4)

cs2 = cc2*gnorm(i,5)

al - (gnorm(i,1)*w(nl,2)

a2 = (gnorm (i,1)*w (n2,2)

qs = (al + a2) / 2.0DO

fluxl - dabs(qs) + csl

flux2 - dabs(qs) + cs2

dtl(nl) = dtl(nl) + flux2

dtl(n2) - dtl(n2) + flux1

continue

iflop - iflop + (noedge * 28)

+ gnorm(i,2)*w(nl,3)

+ gnorm(i,3)*w(nl,4))

+ gnorm(i,2)*w(n2,3)

+ gnorm(i,3)*w(n2,4))

Do all the Scatters

call df scatter_add(lesched, dtl (nonode+ i), dtl (1))

return

end

/ w(nl, 1)

/ w(n2,1)

B Example : Sparse matrix multiplication

The following example of symmetric matrix vector multiplication can be found in the

filematmult, c in the examples/sparse_mat_mult directory.There isa host program

which is present in the same directory but has not been listed here. The sparse matrix

is obtained from the host program using the function get_sparse_mat (). Then we go

through the pre- processing to generate all the fetch lists and build a schedule to bring

in off-processor data. Lastly, the matrix multiplication procedure spmvm() is called.

After the multiplication the values are scattered using the primitive scatter_add

/* PARTI program to do a sparse matrix-vector multiplication */

40

/* ,/

/* This program reads in a sparse matrix with the help of */

/* the host program and does a matrix vector multiplication. */

/* The is a listing of the node program and it is run by the */

/* host program. This program: ,/

I* *I

/* i) gets unstructured mesh (w/ help from host program) */

/* 2) does lots of memory and address stuff on it */

/* 3) generates a vector x */

/* 4) multiplies x by the matrix, getting y */

/* */

#include <cube.h>

#include <stdio.h>

#include <math.h>

#include "parti.h"

#include "main.h"

main(argc,argv)

int argc;

char *argv[];

{

int i, j, count;

TTABLE *table;

SCHED *sr;

double *x, *y, *z;

/*

* Get sparse matrix from host program.

,/

get_sparse_mat () ;

/*

41

* Build translation table by scattering Row to the table.

* IN: Row[i] OUT: table

,/

table = build_translation_table(BL0CKED,Row,Myrows);

/*

* Look up address of Cols and put them in Local and Proc.

* IN: Cols [i] ,table 0UT: Local[i],Proc[i]

,/

dereference(table,Cols,Local,Proc,Mynonzeros);

/*

* Loop through all proc/offset pairs and decide which

* must be fetched from other processors.

* IN: Local[i],Proc[i] OUT: Fetch_l[i],Fetch_p[i]

,/

gen_fetch_list();

/*

* Allocate memory for vectors , and set x[i] = i for local i.

,/

x = (double *) malloc(sizeof(double)*Myrows);

y = (double *) malloc(sizeof(double)*Myrows);

for(i=0;i<Myrows;i++) x[i] = 1.0;

42

/*

* build communications schedule

* IN: Fetch_l[i],Fetch_p[i] OUT: sr

,/

sr = schedule(Fetch_l,Fetch_p,Nfetch);

/*

* Perform sparse-matrix vector multiplication.

,/

spmvm(sr,x,y);

}

/* END OF NODE PROGRAM */

/*

* This function is used to read in the sprse mat.

* It should be ignored if at all possible.

,/

get_sparse_mat()

{

int size, indx_buffer[BUFFFA_SIZE] ;

double coef_buffer[BUFFER_SIZE];

int type, rows_expected;

rows_expected = -1;

Myrows = O;

Mynonzeros = O;

43

gsync();

while((Myrows<rows_expected) I (rows_expected<O)){

cprobe(-l);

type = infotype();

size = infocount()/sizeof(int);

if(type==BOW_INDX_MSG){

crecv(R0W_INDX_MSG,indx_buffer,size_sizeof(int));

crecv(R0W_C0EF_MSG,coef_buffer,size_sizeof(double));

unpack_row_data(indx_buffer,coef_buffer,size);

}

if(type==SETUP_MSG){

crecv(SE_'JP_MSG,indx_buffer,size_sizeof(int));

rows_expected = indx_buffer[mynode()];

Nrows = indx_buffer[numnodes()];

}
}

gsync () ;

The buffers are unpacked in the following

procedure

unpack_row_data(indx_buffer,coef_buffer,size)

int _indx_buffer,size;

double _coef_buffer;

{

int count, i, j, row, ncols, count2, ixx, ist;

double sum;

static int col_count = 0;

for(count=0; count<size;){

Bow[Myrows] = indx_buffer[count];

44

Diags [Myrows] = coef_buffer[count] ;
sum=Diags[Myrows];
ncols = Ncols [Myrows] = indx_buffer [count+l] ;
count=count+2 ;
Mynonzeros += ncols;

if(Myrows >= MAX_ROWS){
fprintf (stderr,"Error on node _.d
exit () ;

}

too many rows ! !!\n",mynode()) ;

if(Mynonzeros >= MAX_NONZER0S){

fprintf(stderr,"Error on node _d

mynode());

exit();

}

too many nonzeros !! !\n",

for(j=0; j<ncols; j++){

Cols [col_count] = indx_buffer[count] ;

Vals [col_count] = coef_buffer[count] ;

sum+=Vals [col_count] ;

col_count++;

count++;

}

Myrows++;

}

* This function takes the Locol[i],Proc[i]

* address for each nonzero col in the matrix

* and puts nonlocal ones into Fetch_l[i],Fetch_p[i]

,/

gen_fetch_list ()

45

{
int count, i, myproc;

myproc = mynode();

/* count offnode refs. */

Nfetch = 0;

for(i=0; i<Mynonzeros; i++) Nfetch += (Proc[i]!=myproc);

/* for each ref. */

Fetch_p = (int *) malloc(sizeof(int)*Nfetch*2);

Fetch_l = &Fetch_p[Nfetch];

count = 0;

for(i=0; i<Mynonzeros; i++){

if(Proc[i] != myproc){

/* if Col[i] refers to an off-proc location.. */

Fetch_p[count] = Proc[i]; /* add it to the fetch list */

Fetch_l[count] = Local[i] ;

count++;

}

/*

* sparse matrix vector multiply function '

* require that the schedule be built and passed in

,/

spmvm(sr,x,y)

SCHED *sr; /* communication schedule */

double *x, *y; /* input and result vectors */

{

int myproc, bcount, count, i,];

double tmp, *buffer, *ybuffer;

/* Allocate local buffer to gather data into. */

buffer = (double *) malloc(sizeof(double)*Nfetch);

46

/* Allocate local buffer to store output vector values into. */

ybuffer = (double *) malloc(sizeof(double)*Nfetch);

/* Gather data using previously computed communication schedule. */

dgather(sr,buffer,x);

myproc = mynode();

bcount = O;

count = O;

for(i=O; i<Myrows; i++) y[i]=O.O;

for(i=O; i<Nfetch; i++) ybuffer[i]=O.O;

for(i=O; i<Myrows; i++){

y[i] += Diags[i]*x[i];

for(j=O; j<Ncols[i]; j++){

/_ for each nonzero col _/

if(Proc[count] == myproc){

/_ if col[count] is local _/

y[i] += x[Local[count]]_Vals[count];

y[Local[count]] += x[i]_Vals[count];

} else {

/_ otherwise look in buffer _/

y[i] += buffer[bcount]_Vals[count];

ybuffer[bcount] += x[i]_Vals[count];

bcount++;

count++;

}

}

dscatter add(sr,ybuffer,y);

gsync();

for(i=O; i<Myrows; i++){

fprintf(myfile," after scatter processor Y,d, y[Y,d] = Y,lf\n",

myproc,i,y[i]) ;

fflush(myfile) ;

}

free (buffer) ;

47

free(ybuffer);

References

[I] H. BERRYMAN, J. SALTZ, AND J. SCROGGS, Execution time support for adaptive

scientific algorithms on distributed memory machines, ICASE Report 90-41, May
1990.

[2]

[3]

[4]

[5]

R. MIRCHANDANEY, J. H. SALTZ, R. M. SMITH, D. M. NICOL, AND

K. CROWLEY, Principles of runtime support for parallel processors, in Proceed-

ings of the 1988 ACM International Conference on Supercomputlng , St. Malo

France, July 1988, pp. 140-152.

S. MIRCHANDANEY, J. SALTZ, P. MEHROTRA, AND H. BERRYMAN, m scheme

for supporting automatic data migration on multicomputers, in Proceedings of the

Fifth Distributed Memory Computing Conference, Charleston S.C., 1990.

J. SALTZ, H. BERRYMAN, AND J. Wu, Runtime compilation for multiprocessors,

ICASE Report 90-59, 1990.

J. SALTZ, K. CROWLEY, R. MIRCtIANDANEY, AND H. BERRYMAN, Run-time

scheduling and execution of loops on message passing machines, Journal of Parallel

and Distributed Computing, 8 (1990), pp. 303-312.

48

_.lr_d _erC_uttCS _r'_
_IC e z_Imrr_St_ at_Oq

1. Report No.
NASA CR-187568

ICASE Interim Report

4. Title and Subtitle

17

Report Documentation Page

2. Government Accession No.

A MANUAL FOR PARTI RUNTIME PRIMITIVES

Revision 1

3. Recipient's Catalog No.

5. Report Date

7, Author(s)

Raja Das

Joel Saltz

Harry Berryman

PedormingOrganizationNameandAddress
institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and SpaceAdministration

Langley Research Center

Hampton, VA 23665-5225

May 1991

6. Performing Organization Code

8, Performing Organization Report No.

Interim Report No. 17

10. Work Unit No.

505-90-52-01

11. Contract or Grant No.

NASI-18605

13. Ty_ ofReportandPeriodCovered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor:
Michael F. Card

Final Report
16. Abstract

Primitives are presented that are designed to help users efficiently program

irregular problems (e.g. unstructured mesh sweeps, sparse matrix codes, adaptive

mesh partial differential equations solvers) on distributed memory machines. These

primitives are also designed for use in compilers for distributed memory multipro-

cessors. Communications patterns are captured at runtime, and the appropriate send

and receive messages are automatically generated.

17• Key Words (Suggested by Author(s))

sparse, unstructured, library, PARTI

18. Distribution Statement

61 - Computer Programming and Software

64 - Numerical Analysis

Unclassified - Unlimited

19. SecuriW Classif. (of this report)
Unclassified

20 SecuriW Cla_if. (of this page)

Unclassified
21 No, of pa_s 2. Price

52 A04

NASA FORM 1626 OCT 86 NASA-laLng_y,199] "

